
Conformal Field Theory and Gravity
Solutions to Problem Set 6 Fall 2024

1. A stack of strings

(a)

SPoly[G] =− 1

4πα′

∫
d2σ Gµν(X)∂αX

µ∂βX
νgαβ (1)

SNG[G] =− 1

2πα′

∫
d2σ

√
− det(γαβ) (2)

where we defined the induced metric γαβ ≡ Gµν(X)∂αX
µ∂βX

ν .

(b) In static gauge, we find the induced metric

γtt = −f(r)−1 +
d ~X

dt
· d

~X

dt
γxx = f(r)−1 +

d ~X

dx
· d

~X

dx
γxt =

d ~X

dt
· d

~X

dx
(3)

Hence we find

− det(γαβ) = −γttγxx + γ2
xt = f(r)−2 − f(r)−1

(d ~X
dt

· d
~X

dt
− d ~X

dx
· d

~X

dx

)
+O(X4) (4)

By plugging this into the NG action and expanding up to leading order in powers
of ~X, we get the result

L ≈ 1

2πα′

∫
dtdx

[
−f(r)−1 +

1

2

(d ~X
dt

· d
~X

dt
− d ~X

dx
· d

~X

dx

)
+...
]

(5)

The corresponding Euler-Lagrange equations are

d2 ~X

dt2
− d2 ~X

dx2
= −~∇(f(r)−1) = −22g2sN

(
ls
r

)22
f(r)2

~X

r
(6)

Therefore, f(r)−1 generated by the stack of strings acts as an attractive potential
on the probe string.

(c) The B−field action yields

1

4πα′

∫
d2σ 2(f(r)−1 − 1) (7)

Hence the total action is

S =
1

2πα′

∫
dtdx

[
−1 +

1

2

(d ~X
dt

· d
~X

dt
− d ~X

dx
· d

~X

dx

)
+...
]

(8)

Hence the string now feels no total force.
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2. The different regimes of the Dp-brane gravity description

(a) When p > 3 and α′ → 0, keeping gYM fixed means that gs → ∞. In this regime,
we would need a non-perturbative definition of string theory. The only method to
address such case is to use S-duality, which is a strong-weak duality that relates
string theory with coupling gs to string theory with coupling 1/gs.

(b) First, using spherical coordinates for the transverse directions with radius r = Uα′,
the metric can be written as

ds2 = f−1/2
p (−dt2 + dx2

1 + ...dx2
p) + α′2f 1/2

p dU2 + α′2f 1/2
p U2dΩ8−p (9)

Then, using that in the limit α′ → 0

fp →
1

α′2
dpNg2YM
U7−p

(10)

we find the given result,

ds2 = α′

(
U (7−p)/2

gYM
√

dpN
dx2

|| +
gYM

√
dpN

U (7−p)/2
dU2 + gYM

√
dpNU (p−3)/2dΩ2

8−p

)
. (11)

Regarding the dilaton, we usually define gs as

gs = eφ∞ (12)

Thus,
eφ = gsf

(3−p)/4
p (13)

Taking the limit α′ → 0,

eφ → gsα
′(p−3)/2

(
dpNg2YM
U7−p

)(3−p)/4

= g2YM(2π)2−p

(
dpNg2YM
U7−p

)(3−p)/4

(14)

(c) Let us first consider a generic case where we have a metric of the form

ds2 = gmn(x
p)dxmdxn︸ ︷︷ ︸
M0

+f(U) gab(x
c)dxadxb︸ ︷︷ ︸
M1

(15)

where U is one of the coordinates xm and we separated the indices in the two
manifolds, m,n, ... for M0 and a, b, ... for M1. Let us also assume that

gmndx
mdxn = gUU(U)dU2 + gm′n′dxm′

dxn′ (16)

where xm′ are all the coordinates xm different from U . We will compute the Ricci
scalar using

Γλ
µν =

1

2
gκλ(∂µgκν + ∂νgµκ − ∂κgµν) (17)

R = gνσ(∂µΓ
µ
σν − ∂σΓ

µ
µν + Γλ

σνΓ
µ
µλ − Γλ

µνΓ
µ
σλ) (18)

To do so, we will separate R into three contributions. The Ricci scalar R0 associated
to gmn, the Ricci scalar R1 associated to gab, and the remaining contribution from
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the non-trivial relation between U and M2. The non-trivial interpolating Christoffel
symbols between M1 and M2 are

ΓU
ab = −1

2
gUUgabf

′(U) Γb
Ua =

1

2
δba
f ′(U)

f(U)
= Γb

aU (19)

These are the only contributions in R that are due to the cross-terms between M0

and M1. We thus obtain

R = R0 +
1

f
R1 + crossterms (20)

where R0 is the Ricci scalar of gmn and R1 is the Ricci scalar of gab. One finds that
the crossterms are,

crossterms(d1, f) =
1

f
gab∂UΓ

U
ab − gUU∂UΓ

a
aU +

1

f
gcdΓU

cdΓ
a
aU − gUUΓb

aUΓ
a
Ub

− 1

f
gbcΓd

UbΓ
U
cd −

1

f
gbcΓU

abΓ
a
cU

= − d1
2f

(gUUf ′)′ − d1
2
gUU

(
f ′

f

)′

− d21
4
gUU

(
f ′

f

)2

+
d1
4
gUU

(
f ′

f

)2

(21)

where d1 is the dimension of M1.
This argument can of course be applied recursively to a metric of the type

ds2 = gmndx
mdxn + f1(U)ga1b1dx

a1dxb1 + f2(U)ga2b2dx
a2dxb2 + . . . (22)

In which case

R = R0 +
1

f1
R1 +

1

f2
R2 + · · ·+ crossterms(d1, f1) + crossterms(d2, f2) + . . . (23)

where d1, d2, ... are the dimensions of M1,M2, ...

Our metric has exactly this form, namely

ds2 = α′ gYM
√

dpN

U (7−p)/2︸ ︷︷ ︸
gUU

dU2 + α′gYM
√

dpNU (p−3)/2︸ ︷︷ ︸
f1(U)

dΩ2
8−p + α′ U (7−p)/2

gYM
√
dpN︸ ︷︷ ︸

f2(U)

dx2
|| . (24)

The Ricci scalar of dU and of dx|| are vanishing, R0 = R2 = 0, whereas the Ricci
scalar of the (8− p)-sphere is R1 = (8− p)(7− p). We thus get

R =
1

f1
R1 + crossterms(d1 = 8− p, f1) + crossterms(d2 = p+ 1, f2)

=
(3− p)(6− p)(7− p)(p+ 1)

8α′gYM
√

dpN
U (3−p)/2 ∼ 1

α′
1

geff

(25)

(d) The condition g2eff � 1 follows automatically from α′R � 1, whereas the condition
on the dilaton gives

eφ ∼ g2YM

(
g2YMN

U7−p

)(3−p)/4

∼ g2eff
N

(g2eff)
(3−p)/4 � 1 =⇒ g2eff � N4/(7−p) (26)
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(e) Let us start with the famous CFT case p = 3.

α′R � 1 =⇒ gYM
√
N ≡

√
λ � 1 (27)

eφ ∼ g2YM =
1

N
λ � 1 (28)

where λ = Ng2YM is the ’t Hooft coupling. Combining both conditions implies

λ � 1 N � 1 (29)

For p 6= 3, the condition of small curvatures gives

α′R ∼ U (3−p)/2

gYM
√
N

� 1 (30)

When p < 3, we see that the curvature grows with U , i.e. U cannot be too big.
When p > 3, this means that the curvature decreases with U , i.e. U cannot be too
small.

Small curvature :
p < 3 : U � g

2/(3−p)
YM N1/(3−p)

p > 3 : U � g
−2/(p−3)
YM N−1/(p−3)

(31)

The condition of small dilaton gives

eφ ∼ g
(7−p)/2
YM N (3−p)/4

U (7−p)(3−p)/4
� 1 (32)

When p < 3, the dilaton decays at large U . This means that the U cannot be
too small. When U gets too small, we need some strongly coupled string theory.
Contrarily, when p > 3, the dilaton grows at large U , thus we would need U not to
be too big.

Small dilaton :
p < 3 : U � g

2/(3−p)
YM N1/(7−p)

p > 3 : U � g
−2/(p−3)
YM N−1/(p−7)

(33)
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