Conformal Field Theory and Gravity

Solutions to Problem Set 6 Fall 2024

1. A stack of strings

(a)

Spoiy[G] = / d*0 G, (X)0a X105 X" g*" (1)

Y ted

Swal6) == 5o [ o\~ det(ra) 2)

where we defined the induced metric v,5 = G, (X )0 X*05X".

In static gauge, we find the induced metric

dX dX dX dX _dX dX 3)
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Hence we find

- det(’yaﬁ) = —YttVaz T ’Yit = f(?“)iz — f(T’)71<% . % — % . %> +O(X4) (4)

By plugging this into the NG action and expanding up to leading order in powers
of X, we get the result

1 ., 17dX dX dX dX
L~o / dtde 1)+ 5 (T a d ) (5)

The corresponding Euler-Lagrange equations are

22X 2X - .
= = 1) = —22¢’N
e = V)T 95

<%) X (6)

f@r)?

Therefore, f(r)~! generated by the stack of strings acts as an attractive potential
on the probe string.

The B—field action yields

/ Po 2 f(r) — 1) (7)

Ve
Hence the total action is

s ferle (G G- T B e

Hence the string now feels no total force.
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2. The different regimes of the Dp-brane gravity description

(a) When p > 3 and o/ — 0, keeping gyy fixed means that gs — oo. In this regime,
we would need a non-perturbative definition of string theory. The only method to
address such case is to use S-duality, which is a strong-weak duality that relates

string theory with coupling g to string theory with coupling 1/g;.

(b) First, using spherical coordinates for the transverse directions with radius r = Ud/,

the metric can be written as
ds® = f 12 (=dt® + dat + ..da)) + P f1PdU? + o f)PUdQs
Then, using that in the limit o/ — 0

1 deg%M
a? Ui

fo =

we find the given result,

gyvn/d —p)/2

Regarding the dilaton, we usually define g as

Y JILN
ds® = of ( + AU 4 g/ LNU 0L |

ge = €9

Thus,
b — gsf]g3—p)/4

Taking the limit o/ — 0,

d Ng2 (3—p)/4 d Ng2 (3—p)/4
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(c) Let us first consider a generic case where we have a metric of the form

ds® = G (2P)dz™dz" + f (U) gap(2°)dada®
—

Mo My

(9)

(10)

(11)

(12)

(13)

(14)

(15)

where U is one of the coordinates ™ and we separated the indices in the two

manifolds, m, n, ... for My and a, b, ... for M. Let us also assume that

Gmnda"dz" = guu (U)dU? + gy da™ da™

(16)

where 2 are all the coordinates ™ different from U. We will compute the Ricci

scalar using

1 K
Fi\w = 59 )\<aﬂgm/ + aljg,tm - ang,uu)

R = g"(9,I%, — 9,1k, + T, Ih — T, Th)

oV pA prs o

(17)

(18)

To do so, we will separate R into three contributions. The Ricci scalar Ry associated
t0 gmn, the Ricci scalar R; associated to g4, and the remaining contribution from
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the non-trivial relation between U and M. The non-trivial interpolating Christoffel
symbols between M; and M, are
1

I = 50" ) Th = 305 1 (19)

These are the only contributions in R that are due to the cross-terms between M,
and M. We thus obtain

1
R =Ry + ?Rl + crossterms (20)

where Ry is the Ricci scalar of g,,, and Ry is the Ricci scalar of g,. One finds that
the crossterms are,

1 1
crossterms(dy, f) =—g*oyT'Y, — g"YouT?, + —grYre, — ¢Ure, re,

f ¢ “of
. l chd bFU . l chU Fa
7? 7?
_ dl(UUf) d1 UU<£)/_d_%gUU(£)2+ﬂgUU<£)2
2f f 4 f 4 f
(21)
where d; is the dimension of M;.
This argument can of course be applied recursively to a metric of the type
ds® = grndx™dz"™ + f1(U)gap, dz® dz® + fo(U)gagp,dz®2dz® + . .. (22)

In which case

R=Ry+ 7 R1 + — 7 Rg + -+ + crossterms(dy, f1) + crossterms(ds, f2) + ... (23)
1 2

where dy, ds, ... are the dimensions of My, Mo, ...

Our metric has exactly this form, namely

[7(7-p)/2
ds® = /gY“@V dU? + o/ gyn /A, NUP2 A0} 4+ o/ ————daf. (24)
_/_U A ’ AL AL
(U N e’
guu f2(U)

The Ricci scalar of dU and of dx) are vanishing, Ry = R, = 0, whereas the Ricci
scalar of the (8 — p)-sphere is R; = (8 — p)(7 — p). We thus get

R= f—Rl + crossterms(d; = 8 — p, f1) + crossterms(ds = p + 1, f5)
1

_B=p)6=-DT =P+ gy 11 (25)

8a’ gymy/dp N o Gett

The condition g% > 1 follows automatically from o/ R < 1, whereas the condition
on the dilaton gives

2 Q%MN (=n/ g2ff 2 1\(3 4 2 4/(7
e? ~ gun <m> ~ ﬁ(geff)( M <] = gl < NYTP) (26)



(e) Let us start with the famous CFT case p = 3.

dR<1 = gyuVN=VA>1 (27)
e? ~ g2y = i)\ <1 (28)
YM N

where A = Ng2,, is the 't Hooft coupling. Combining both conditions implies

A1 N> 1 (29)

For p # 3, the condition of small curvatures gives
U3-9)/2

~— K1
gYM\/N

When p < 3, we see that the curvature grows with U, i.e. U cannot be too big.
When p > 3, this means that the curvature decreases with U, i.e. U cannot be too
small.

o' R (30)

p<3:U < g PNYED

Small curvature : (31)
p>3:U > gy "IN @
The condition of small dilaton gives
(T-9)/2 N (3—p) /4
gf ~ M <1 (32)

U(7—p)(3—p)/4

When p < 3, the dilaton decays at large U. This means that the U cannot be
too small. When U gets too small, we need some strongly coupled string theory.
Contrarily, when p > 3, the dilaton grows at large U, thus we would need U not to
be too big.

p<3:U> gl PNV

Small dilaton :
p>3:U< gy N



