Conformal Field Theory and Gravity

Solutions to Problem Set 6

Fall 2024

1. A stack of strings

(a)

$$S_{\text{Poly}}[G] = -\frac{1}{4\pi\alpha'} \int d^2\sigma \ G_{\mu\nu}(X) \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} g^{\alpha\beta} \tag{1}$$

$$S_{NG}[G] = -\frac{1}{2\pi\alpha'} \int d^2\sigma \sqrt{-\det(\gamma_{\alpha\beta})}$$
 (2)

where we defined the induced metric $\gamma_{\alpha\beta} \equiv G_{\mu\nu}(X)\partial_{\alpha}X^{\mu}\partial_{\beta}X^{\nu}$.

(b) In static gauge, we find the induced metric

$$\gamma_{tt} = -f(r)^{-1} + \frac{d\vec{X}}{dt} \cdot \frac{d\vec{X}}{dt} \quad \gamma_{xx} = f(r)^{-1} + \frac{d\vec{X}}{dx} \cdot \frac{d\vec{X}}{dx} \qquad \gamma_{xt} = \frac{d\vec{X}}{dt} \cdot \frac{d\vec{X}}{dx}$$
(3)

Hence we find

$$-\det(\gamma_{\alpha\beta}) = -\gamma_{tt}\gamma_{xx} + \gamma_{xt}^2 = f(r)^{-2} - f(r)^{-1} \left(\frac{d\vec{X}}{dt} \cdot \frac{d\vec{X}}{dt} - \frac{d\vec{X}}{dx} \cdot \frac{d\vec{X}}{dx}\right) + \mathcal{O}(X^4)$$
(4)

By plugging this into the NG action and expanding up to leading order in powers of \vec{X} , we get the result

$$L \approx \frac{1}{2\pi\alpha'} \int dt dx \left[-f(r)^{-1} + \frac{1}{2} \left(\frac{d\vec{X}}{dt} \cdot \frac{d\vec{X}}{dt} - \frac{d\vec{X}}{dx} \cdot \frac{d\vec{X}}{dx} \right) + \dots \right]$$
 (5)

The corresponding Euler-Lagrange equations are

$$\frac{d^2\vec{X}}{dt^2} - \frac{d^2\vec{X}}{dx^2} = -\vec{\nabla}(f(r)^{-1}) = -22g_s^2 N \frac{\left(\frac{l_s}{r}\right)^{22}}{f(r)^2} \frac{\vec{X}}{r}$$
 (6)

Therefore, $f(r)^{-1}$ generated by the stack of strings acts as an attractive potential on the probe string.

(c) The B-field action yields

$$\frac{1}{4\pi\alpha'} \int d^2\sigma \ 2(f(r)^{-1} - 1) \tag{7}$$

Hence the total action is

$$S = \frac{1}{2\pi\alpha'} \int dt dx \left[-1 + \frac{1}{2} \left(\frac{d\vec{X}}{dt} \cdot \frac{d\vec{X}}{dt} - \frac{d\vec{X}}{dx} \cdot \frac{d\vec{X}}{dx} \right) + \dots \right]$$
 (8)

Hence the string now feels no total force.

2. The different regimes of the Dp-brane gravity description

- (a) When p > 3 and $\alpha' \to 0$, keeping $g_{\rm YM}$ fixed means that $g_s \to \infty$. In this regime, we would need a non-perturbative definition of string theory. The only method to address such case is to use S-duality, which is a strong-weak duality that relates string theory with coupling g_s to string theory with coupling $1/g_s$.
- (b) First, using spherical coordinates for the transverse directions with radius $r = U\alpha'$, the metric can be written as

$$ds^{2} = f_{p}^{-1/2}(-dt^{2} + dx_{1}^{2} + \dots dx_{p}^{2}) + \alpha'^{2}f_{p}^{1/2}dU^{2} + \alpha'^{2}f_{p}^{1/2}U^{2}d\Omega_{8-p}$$

$$\tag{9}$$

Then, using that in the limit $\alpha' \to 0$

$$f_p \to \frac{1}{\alpha'^2} \frac{d_p N g_{\rm YM}^2}{U^{7-p}} \tag{10}$$

we find the given result,

$$ds^{2} = \alpha' \left(\frac{U^{(7-p)/2}}{g_{\text{YM}} \sqrt{d_{p}N}} dx_{\parallel}^{2} + \frac{g_{\text{YM}} \sqrt{d_{p}N}}{U^{(7-p)/2}} dU^{2} + g_{\text{YM}} \sqrt{d_{p}N} U^{(p-3)/2} d\Omega_{8-p}^{2} \right) . \quad (11)$$

Regarding the dilaton, we usually define g_s as

$$g_s = e^{\phi_{\infty}} \tag{12}$$

Thus,

$$e^{\phi} = g_s f_p^{(3-p)/4} \tag{13}$$

Taking the limit $\alpha' \to 0$,

$$e^{\phi} \to g_s \alpha'^{(p-3)/2} \left(\frac{d_p N g_{\text{YM}}^2}{U^{7-p}}\right)^{(3-p)/4} = g_{\text{YM}}^2 (2\pi)^{2-p} \left(\frac{d_p N g_{\text{YM}}^2}{U^{7-p}}\right)^{(3-p)/4}$$
 (14)

(c) Let us first consider a generic case where we have a metric of the form

$$ds^{2} = \underbrace{g_{mn}(x^{p})dx^{m}dx^{n}}_{\mathcal{M}_{0}} + f(U)\underbrace{g_{ab}(x^{c})dx^{a}dx^{b}}_{\mathcal{M}_{1}}$$

$$\tag{15}$$

where U is one of the coordinates x^m and we separated the indices in the two manifolds, m, n, ... for \mathcal{M}_0 and a, b, ... for \mathcal{M}_1 . Let us also assume that

$$g_{mn}dx^{m}dx^{n} = g_{UU}(U)dU^{2} + g_{m'n'}dx^{m'}dx^{n'}$$
(16)

where $x^{m'}$ are all the coordinates x^m different from U. We will compute the Ricci scalar using

$$\Gamma^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\kappa\lambda} (\partial_{\mu} g_{\kappa\nu} + \partial_{\nu} g_{\mu\kappa} - \partial_{\kappa} g_{\mu\nu}) \tag{17}$$

$$R = g^{\nu\sigma} (\partial_{\mu} \Gamma^{\mu}_{\sigma\nu} - \partial_{\sigma} \Gamma^{\mu}_{\mu\nu} + \Gamma^{\lambda}_{\sigma\nu} \Gamma^{\mu}_{\mu\lambda} - \Gamma^{\lambda}_{\mu\nu} \Gamma^{\mu}_{\sigma\lambda})$$
 (18)

To do so, we will separate R into three contributions. The Ricci scalar R_0 associated to g_{mn} , the Ricci scalar R_1 associated to g_{ab} , and the remaining contribution from

the non-trivial relation between U and \mathcal{M}_2 . The non-trivial interpolating Christoffel symbols between \mathcal{M}_1 and \mathcal{M}_2 are

$$\Gamma_{ab}^{U} = -\frac{1}{2}g^{UU}g_{ab}f'(U) \qquad \Gamma_{Ua}^{b} = \frac{1}{2}\delta_{a}^{b}\frac{f'(U)}{f(U)} = \Gamma_{aU}^{b}$$
(19)

These are the only contributions in R that are due to the cross-terms between \mathcal{M}_0 and \mathcal{M}_1 . We thus obtain

$$R = R_0 + \frac{1}{f}R_1 + \text{crossterms} \tag{20}$$

where R_0 is the Ricci scalar of g_{mn} and R_1 is the Ricci scalar of g_{ab} . One finds that the crossterms are,

$$\operatorname{crossterms}(d_{1}, f) = \frac{1}{f} g^{ab} \partial_{U} \Gamma^{U}_{ab} - g^{UU} \partial_{U} \Gamma^{a}_{aU} + \frac{1}{f} g^{cd} \Gamma^{U}_{cd} \Gamma^{a}_{aU} - g^{UU} \Gamma^{b}_{aU} \Gamma^{a}_{Ub}$$

$$- \frac{1}{f} g^{bc} \Gamma^{d}_{Ub} \Gamma^{U}_{cd} - \frac{1}{f} g^{bc} \Gamma^{U}_{ab} \Gamma^{c}_{cU}$$

$$= -\frac{d_{1}}{2f} (g^{UU} f')' - \frac{d_{1}}{2} g^{UU} \left(\frac{f'}{f}\right)' - \frac{d_{1}^{2}}{4} g^{UU} \left(\frac{f'}{f}\right)^{2} + \frac{d_{1}}{4} g^{UU} \left(\frac{f'}{f}\right)^{2}$$

$$(21)$$

where d_1 is the dimension of \mathcal{M}_1 .

This argument can of course be applied recursively to a metric of the type

$$ds^{2} = g_{mn}dx^{m}dx^{n} + f_{1}(U)g_{a_{1}b_{1}}dx^{a_{1}}dx^{b_{1}} + f_{2}(U)g_{a_{2}b_{2}}dx^{a_{2}}dx^{b_{2}} + \dots$$
 (22)

In which case

$$R = R_0 + \frac{1}{f_1}R_1 + \frac{1}{f_2}R_2 + \dots + \text{crossterms}(d_1, f_1) + \text{crossterms}(d_2, f_2) + \dots$$
 (23)

where $d_1, d_2, ...$ are the dimensions of $\mathcal{M}_1, \mathcal{M}_2, ...$

Our metric has exactly this form, namely

$$ds^{2} = \underbrace{\alpha' \frac{g_{\text{YM}} \sqrt{d_{p} N}}{U^{(7-p)/2}}}_{g_{UU}} dU^{2} + \underbrace{\alpha' g_{\text{YM}} \sqrt{d_{p} N} U^{(p-3)/2}}_{f_{1}(U)} d\Omega_{8-p}^{2} + \underbrace{\alpha' \frac{U^{(7-p)/2}}{g_{\text{YM}} \sqrt{d_{p} N}}}_{f_{2}(U)} dx_{\parallel}^{2}. \quad (24)$$

The Ricci scalar of dU and of dx_{\parallel} are vanishing, $R_0 = R_2 = 0$, whereas the Ricci scalar of the (8-p)-sphere is $R_1 = (8-p)(7-p)$. We thus get

$$R = \frac{1}{f_1} R_1 + \operatorname{crossterms}(d_1 = 8 - p, f_1) + \operatorname{crossterms}(d_2 = p + 1, f_2)$$

$$= \frac{(3 - p)(6 - p)(7 - p)(p + 1)}{8\alpha' g_{\text{YM}} \sqrt{d_p N}} U^{(3-p)/2} \sim \frac{1}{\alpha'} \frac{1}{g_{\text{eff}}}$$
(25)

(d) The condition $g_{\rm eff}^2 \gg 1$ follows automatically from $\alpha' R \ll 1$, whereas the condition on the dilaton gives

$$e^{\phi} \sim g_{\rm YM}^2 \left(\frac{g_{\rm YM}^2 N}{U^{7-p}}\right)^{(3-p)/4} \sim \frac{g_{\rm eff}^2}{N} (g_{\rm eff}^2)^{(3-p)/4} \ll 1 \implies g_{\rm eff}^2 \ll N^{4/(7-p)}$$
 (26)

(e) Let us start with the famous CFT case p = 3.

$$\alpha' R \ll 1 \implies g_{YM} \sqrt{N} \equiv \sqrt{\lambda} \gg 1$$
 (27)

$$e^{\phi} \sim g_{\rm YM}^2 = \frac{1}{N} \lambda \ll 1 \tag{28}$$

where $\lambda = Ng_{\rm YM}^2$ is the 't Hooft coupling. Combining both conditions implies

$$\lambda \gg 1 \qquad N \gg 1 \tag{29}$$

For $p \neq 3$, the condition of small curvatures gives

$$\alpha' R \sim \frac{U^{(3-p)/2}}{g_{\rm YM}\sqrt{N}} \ll 1 \tag{30}$$

When p < 3, we see that the curvature grows with U, i.e. U cannot be too big. When p > 3, this means that the curvature decreases with U, i.e. U cannot be too small.

Small curvature :
$$p < 3 : U \ll g_{\text{YM}}^{2/(3-p)} N^{1/(3-p)}$$

$$p > 3 : U \gg g_{\text{YM}}^{-2/(p-3)} N^{-1/(p-3)}$$
 (31)

The condition of small dilaton gives

$$e^{\phi} \sim \frac{g_{\text{YM}}^{(7-p)/2} N^{(3-p)/4}}{U^{(7-p)(3-p)/4}} \ll 1$$
 (32)

When p < 3, the dilaton decays at large U. This means that the U cannot be too small. When U gets too small, we need some strongly coupled string theory. Contrarily, when p > 3, the dilaton grows at large U, thus we would need U not to be too big.

Small dilaton :
$$p < 3: U \gg g_{\rm YM}^{2/(3-p)} N^{1/(7-p)}$$

$$p > 3: U \ll g_{\rm YM}^{-2/(p-3)} N^{-1/(p-7)}$$
 (33)